
CSCI 1951-W Sublinear Algorithms for Big Data Fall 2020

Lecture 5: Bounded Degree Graph Algorithms

Lecturer: Jasper Lee Scribe: Louis Kilfoyle

1 Representing Graphs

• To consider how far from some property a graph is, we need a distance metric.

• Algorithms and complexities for testing depend significantly on how we represent
graphs. In particular, sparse and dense graphs are often represented differently.

– Uniform Sparsity: All vertices have degree ≤ d. Well represented by adjacency
lists.

– Average Sparsity: Average vertex degree ≤ d

– Dense: One idea of “dense” is the property that there exists at least one vertex
with high degree. Well represented by an adjacency matrix.

2 Bounded Degree Graph Model

Overview

• Assume graph is represented such that we can query (v, i) to get the i-th neighbor of
vertex v, for i ∈ [d].

• No kind of consistency between ordering of vertices. v1 could be the i-th neighbor of
v2, and v2 the j-th neighbor of v1.

• Query returns NULL if v has fewer than i neighbors. (Notice binary search can
determine vertex degree).

• Input size? What does “linear in the input” mean here? Here size = d · n, since this
is the total number of distinct queries possible.

Distance & Representation

• A natural distance metric in this model is:

d(G1, G2) =
1

dn
·

n!

j=1

d!

i=1

G1(j,i) ∕=G2(j,i)

• Notice that if G1 and G2 are the same graph but with different representations (so
all vertices have the same neighbors, but ordered differently), they will have non-zero
distance between one another.

– This is odd, but not problematic for property testing.

– Recall that, to measure property distance, we find the element in the property
set with the least distance to the element being tested.

1

– In this case, we additionally take the representation (permutations of adjacency
lists) of that element (graph) with the least distance to the element being tested.

3 Connectedness Testing: O(1
!2d) Algorithm

ε-far from connected just means we need to change at most ε · dn entries to make the graph
connected. In order to leverage the “ε-gap” algorithmically, we first relate this number of
necessary changes to the number of components in the graph.

Lemma 5.1 If G is ε-far from connected, then it has ≥ ε·dn
2 components.

Proof. Contrapositive: If there are < ε·dn
2 components in the graph, then we only need to

change fewer than ε · dn entries to connect the graph.

Idea: For k components, we can add k − 1 edges by making 2k − 2 changes (2 changes
per edge, one in each of two components) to connect the graph. However, if a component
is d-regular, it cannot gain an edge and we must redirect an existing one. This can still be
done in two changes. So each component requires at most two changes, and therefore we
can connect the graph in 2k changes.

Thus we can conclude that a graph with fewer than ε·dn
2 components can be connected

in fewer than ε · dn changes.

Furthermore, we can show by an averaging argument that, not only does the graph have
a lot of components, it must also have a lot of small components.

Lemma 5.2 If G is ε-far from connected, then at least ε·dn
4 components have size ≤ 4

εd .

Proof. By contradiction. Assume < ε·dn
4 components of size ≤ 4

εd . Because G is ε-far from

connected, we know by Lemma 5.1 it has at least ε·dn
2 components. So there must exist

> ε·dn
4 components of size > 4

εd , but this implies > ε·dn
4 × 4

εd = n vertices in these components
alone.

Algorithm 5.3: ε-far Connectedness Testing

Input: A graph G represented by adjacency lists
Output: An estimate for whether or not G is ε-far from connected
for i = 1 ... O(1

εd) do
Pick random vertex u
Breadth-first search (BFS) from u for at most 4

εd new vertices

end

So we explore at most 1
εd vertices in each BFS, and do this for O

"
1
εd

#
iterations. We might

however “visit” a vertex O(d) many times because it has degree at most d. Hence the query
complexity is $

1

εd
· d

εd

%
= O

$
1

ε2d

%

A more sophisticated variation of the above algorithm can improve the query complexity to

O

$
1

ε
polylog

$
1

ε2d

%%

2

but it is beyond the scope of this class. Notice that this algorithm is adaptive (BFS is
inherently adaptive). Non-adaptive algorithms cannot do better than Ω (

√
n). Again, proof

of this is outside of scope.

4 Approximating # of Connected Components: O(d
!3) Algo-

rithm

Known Complexity Bounds: O
"
d
ε2
log d

ε

#
and Ω

"
d
ε2

#

Goal: Approximate true number of connected components in graph to within ±εn, with
probability ≥ 1− δ.

General idea is to sample random vertices and BFS from them (possibly stopping early),
like algorithm 5.3. As we BFS, we get an idea of the size of a component. This raises the
question: how do we relate the number of components to the size of components?

Notation: nu is the size of the component to which vertex u belongs. CC refers to
Connected Components.

Proposition 5.4

of CC =
!

v

1

nv

Proof. For a component H !

v∈H

1

nv
= 1

Idea: Subsample to approximate total sum. Use Hoeffding’s Inequality for concentration
(applicable because 1

nv
∈ [0, 1]).

Algorithm 5.5: Estimating # of CC in a Graph

Input: A graph G represented by adjacency lists
Output: A high probability estimate for the # of CC in G
for i = 1...k ∈ Θ(1

ε2
log 1

δ) do
Pick random vertex u
Compute nu via BFS from u

end

return n× 1
k

&k
i=1

1
nu

The query complexity here is unfortunately Ω (n) because there might exists only a com-
ponent with Θ(n) vertices. This algorithm is therefore not sublinear in n. We need to fix
the algorithm.

Observation: Step 2 (BFS) has high complexity if and only if nu is big (i.e. n be-
longs to a big component). Equivalently, if and only if 1

nu
is small. Refer back to Prop

5.4, and notice now that the highest complexity vertices also contribute the least to the sum.

3

Solution: End the BFS early if running too long. That is, compute n̂u instead of nu:

n̂u = min

$
nu,

2

ε

%

This is an acceptable introduction of error, because
''''
1

n̂u
− 1

nu

'''' ≤
ε

2
⇒

!

u

''''
1

n̂u
− 1

nu

'''' ≤
εn

2

Algorithm 5.6: Run Algorithm 5.5 but compute n̂u instead by ending the BFS at 2
ε ver-

tices explored. The query complexity here is now O
"
d
ε3

#
.

Error: We have bias (introduced by n̂u), and sampling error. The former we’ve shown
to be bounded by εn

2 , and the latter can be bounded the same way by tuning sample size.
So

Total Error = Bias + Sampling ≤ εn

2
+

εn

2
= εn

5 Approximating MST Weight: O
!
dw4 logw

!3

"
Algorithm

Known Complexity Bounds: O
"
dw
ε3

log dw
ε

#
and Ω

"
dw
ε2

#

Assumptions:

• d is max degree of graph

• Edges have weights in [w] = {1, ..., w}. For a graph with weights in R, divide the range
of weights into w equal width regions and assign labels from [w]. w is a “granularity
parameter” that affects the quality of our estimate and complexity of our algorithm
(higher granularity = higher complexity = higher accuracy).

Goal: Approximate the weight of the Minimum Spanning Tree (denoted w(MST)) to ± εn.
Note this is additive error, but w(MST) is ≥ n and therefore additive error implies multi-
plicative error as well. That is, our estimate will also be at most (1 + ε) · w(MST).

Idea: Reduce approximating MST to counting number of components in a family of sub-
graphs of G.

Notation:

• Bi = # of edges in the MST with weight > i

• Ci = # of components in subgraph of edges with weights ≤ i

Observations:

• If we apply Kruskal’s Algorithm on a graph with weights from [w], we essentially run
the following process. Take all edges with weight 1 that connect disjoint components
(i.e. don’t form cycles). Repeat for weights 2...w.

4

• After the first pass of Kruskal’s Algorithm, we’ve created a subgraph by taking edges
with weight 1. This subgraph now has C1 components, by definition. We know that
a graph with k components needs k − 1 more edges to become connected, so it must
be the case that the remaining passes of Kruskal’s Algorithm will add C1 − 1 edges.
Since these will end up being exactly the MST edges with weight > 1, the number of
such edges is B1 by definition. So B1 = C1 − 1, and this generalizes to any i ∈ [w].
Therefore

Bi = Ci − 1

• Now we can simply write the weight of the MST as a sum over weighted edges. There
are Bi−Bi+1 edges in the MST with weight i+1, for i ∈ [0, w−1]. This is a telescoping
sum, so we can rearrange to write the weight only in terms of n, w, and the Ci values.

w(MST) =

w−1!

i=0

(i+ 1)(Bi −Bi+1)

=

w−1!

i=0

Bi

=

w−1!

i=0

Ci − 1

= n− w +

w−1!

i=1

Ci

• With Algorithm 5.6, we know how to estimate the number of components in a graph.
So we can estimate Ci for each i ∈ [1, w − 1] to get an estimate for w(MST):

Algorithm 5.7: Estimating weight of MST

Input: A graph G represented by adjacency lists
Output: An estimate for the weight of the MST of G
for i = 1 ... w − 1 do

(Ci ← Alg 5.6 with error ε
w and δ = 1

3w
end

return n− w +
& (Ci

Analysis:

• Total Error ≤
&w

i=1
ε
wn = εn

• Failure Probability ≤ δw = 1
3ww = 1

3

Why not subsample the sum, as in the previous application? Not obvious how to control
variance in this simple algorithm. Hoeffding’s bound wouldn’t be useful here because Ci ∈
[0, n], making the query complexity upper bound quadratic in n.

5

